Indian Statistical Institute, Bangalore B. Math (II)

Second semester 2003-2004 Midterm Examination : Statistics (II)

Maximum Score 60

Date: 04-03-2004

Duration: 3 Hours

1. In the game of bowling a strike is made when a full setup of 10 pins is knocked down with the first delivery. Adithya's coach to monitor his progress keeps record of Adithya's performance. During one of the practice sessions in n independent trials, $X_1, X_2, ..., X_n$, the record of strike being made or not was kept. Assume that the ability to make strike is constant over trials and that in a given trial Adithya makes a strike with probability θ , $\theta \in (0,1)$. Find sufficient statistics for θ based on $X_1, X_2, ..., X_n$. Find the Fisher Information $I(\theta)$ in the sample $X_1, X_2, ..., X_n$ about the parameter θ . Give an unbiased estimator for θ . Check whether it attains CRLB. If yes, is it UMVUE for θ ? If not, obtain UMVUE for θ and check whether it attains CRLB.

[08]

2. Number of incoming calls to the EPBX, handled by Smt. Rathnamma, in one unit of time may be modelled by $Poisson(\lambda)$, $\lambda > 0$. Smt. Rathnamma is interested in estimating $\tau(\lambda) = e^{-\lambda}$ the probability of NO calls in one unit of time. Let $X_1, X_2, ..., X_n$ denote the number of incoming calls in one unit of time recorded on n different occasions. Can you assist Smt. Rathnamma to estimate the required probability $\tau(\lambda) = e^{-\lambda}$? Give an unbiased estimator for $\tau(\lambda)$. Is your estimator UMVUE for estimating $\tau(\lambda)$? If yes, substantiate. If no, obtain UMVUE for $\tau(\lambda)$.

[10]

3. In Que 2, if Smt. Rathnamma has reasons to believe that λ has a prior distribution given by Gamma(a,b), a > 0, b > 0 known. Obtain posterior distribution of λ given the observations. $X_1, X_2, ..., X_n$. Obtain posterior mean and variance. Suggest Bayes estimator for λ .

[10]

4. Suppose that a particle counter is imperfect and independently detects each incoming particle with probability θ . Suppose further that the distribution of N, the number of incoming particles in a unit of time is $truncated\ Poisson(\lambda)$, given by $p(n|\lambda) = \frac{e^{-\lambda}\lambda^n}{n!(1-e^{-\lambda})},\ n=1,2,...;\ \lambda>0$ is known. Let X be the number of particles detected by the counter. Show that (X,N) is minimal sufficient and N is ancillary for θ . Is the estimator $W=\frac{X}{N}$ unbiased for θ ? Obtain its MSE.

[10]

5. Let $X_1, X_2, ..., X_n$ be a random sample from the pdf $f(x|\theta) = e^{-(x-\theta)}$; $-\infty < \theta < x < \infty$. Show that $X_{(1)}$ is a complete sufficient statistic for θ . Use Basu's Theorem to show that $X_{(1)}$ and S^2 are independent.

[10]

6. Pareto distribution is often appropriate to model income. Let $X_1, X_2, ..., X_n$ be a random sample from Pareto density given by $f(x|\theta) = c\theta^c x^{-(c+1)}$ for $x \ge \theta$ and 0 otherwise, where $\theta > 0$ and c is a positive constant. Find maximum likelihood estimator for θ based on $X_1, X_2, ..., X_n$. Obtain method of moments estimator for θ and check whether it is consistent.

[08]

7. Let $X_n, Y_n, n \ge 1$ be sequences of random variables and X be a random variable, all defined on the same probability space, such that $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} c$, where c is a finite constant. Prove that $X_n Y_n \xrightarrow{d} cX$.